68 research outputs found

    Convergence behaviour of structural FSM traversal

    Get PDF
    We present a theoretical analysis of structural FSM traversal, which is the basis for the sequential equivalence checking algorithm Record & Play presented earlier. We compare the convergence behaviour of exact and approximative structural FSM traversal with that of standard BDD-based FSM traversal. We show that for most circuits encountered in practice exact structural FSM traversal reaches the fixed point as fast as symbolic FSM traversal, while approximation can significantly reduce in the number of iterations needed. Our experiments confirm these results

    Verification of integer multipliers on the arithmetic bit level

    Get PDF
    One of the most severe short-comings of currently available equivalence checkers is their inability to verify integer multipliers. In this paper, we present a bit level reverse-engineering technique that can be integrated into standard equivalence checking flows. We propose a Boolean mapping algorithm that extracts a network of half adders from the gate netlist of an addition circuit. Once the arithmetic bit level representation of the circuit is obtained, equivalence checking can be performed using simple arithmetic operations. Experimental results show the promise of our approach

    Accelerating Boolean implications with FPGAs

    Get PDF
    We present the FPGA implementation of an algorithm [4] that computes implications between signal values in a boolean network. The research was performed as a masterrsquos thesis [5] at the University of Frankfurt. The recursive algorithm is rather complex for a hardware realization and therefore the FPGA implementation is an interesting example for the potential of reconfigurable computing beyond systolic algorithms. A circuit generator was written that transforms a boolean network into a network of small processing elements and a global control logic which together implement the algorithm. The resulting circuit performs the computation two orders of magnitudes faster than a software implementation run by a conventional workstation

    Cell replication and redundancy elimination during placement for cycle time optimization

    Get PDF
    This paper presents a new timing driven approach for cell replication tailored to the practical needs of standard cell layout design. Cell replication methods have been studied extensively in the context of generic partitioning problems. However, until now it has remained unclear what practical benefit can be obtained from this concept in a realistic environment for timing driven layout synthesis. Therefore, this paper presents a timing driven cell replication procedure, demonstrates its incorporation into a standard cell placement and routing tool and examines its benefit on the final circuit performance in comparison with conventional gate or transistor sizing techniques. Furthermore, we demonstrate that cell replication can deteriorate the stuck-at fault testability of circuits and show that stuck-at redundancy elimination must be integrated into the placement procedure. Experimental results demonstrate the usefulness of the proposed methodology and suggest that cell replication should be an integral part of the physical design flow complementing traditional gate sizing techniques

    Cycle time optimization by timing driven placement with simultaneous netlist transformations

    Get PDF
    We present new concepts to integrate logic synthesis and physical design. Our methodology uses general Boolean transformations as known from technology-independent synthesis, and a recursive bi-partitioning placement algorithm. In each partitioning step, the precision of the layout data increases. This allows effective guidance of the logic synthesis operations for cycle time optimization. An additional advantage of our approach is that no complicated layout corrections are needed when the netlist is changed

    Visual Integration of Data and Model Space in Ensemble Learning

    Full text link
    Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.Comment: 8 pages, 7 picture

    EU funding policies may be undermined by regional authorities using structural fund allocations to win votes at the local level

    Get PDF
    More than half of the EU budget is dedicated to Structural Funds, which are allocated across EU regions with the aim of promoting economic and social development. Lisa Dellmuth, Michael Stoffel and Dominik Schraff write that the use of decentralised authorities to allocate structural funding can create substantive problems for the EUā€™s policy goals. They illustrate that the distribution of funds often reflects local political concerns, with districts that support the regional governmentā€™s party receiving disproportionate shares of funding

    Record and play: a structural fixed point iteration for sequential circuit verification

    Get PDF
    Abstract This paper propose

    Record and play: a structural fixed point iteration for sequential circuit verification

    Get PDF
    Abstract This paper propose
    • ā€¦
    corecore